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ABSTRACT OF THESIS

SYMMETRIZATION, VORTEX ROSSBY WAVES, AND HURRICANE MOTION IN
AN ASYMMETRIC BALANCE MODEL

The physical complexities of primitive equation (PE) models commonly used for fore-
casting hurricane track and structure changes can often make interpretation of their output
difficult and speculative. A simplified balance formulation of these phenomena is desir-
able to further understand the physics of rapidly rotating storms. This thesis presents a
shallow-water numerical model suitable for simulating hurricane track and evolution based
on asymmetric balance (AB) theory.

The model is a shallow-water formulation of AB, that incorporates rapid rotation and
permits order-one divergence. The numerical solution technique employed is a pseudo-
spectral azimuthal modes model utilizing grid points radially and Fourier modes az-
imuthally.

In this work we also consider the problem of vortex axisymmetrization as a model for
outwardly propagating spiral bands in hurricanes. The basic physics is illustrated most
simply for stable vorticity monopoles on an f-plane. Unlike the dynamics of sheared distur-
bances in rectilinear shear flow, symmetrizing disturbances on a vortex are accompanied
by outwardly propagating Rossby waves whose restoring mechanism is associated with
the radial gradient of storm vorticity. Expressions for both phase and group velocities
are developed and verified confirming early speculations on the existence of vortex Rossby
waves in hurricanes. Effects of radially propagating waves on the mean vortex are also
analyzed and the results suggest a new mechanism of vortex intensification. The theory

is applied to a hurricane-like vortex in a shallow water asymmetric balance model and the

it




results are in good agreement with observations. The vortex wave mechanics developed

here shows promise in elucidating basic mechanisms of hurricane evolution and structure

changes, such as the formation of secondary eyewalls.
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Department of Atmospheric Science
Colorado State University
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Summer 1995
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Chapter 1
INTRODUCTION

The physical complexities of primitive equation (PE) models commonly used for fore-
casting hurricane track and structure changes can often make interpretation of their output
difficult and speculative. A simplified balance formulation of these phenomena is desirable
to further understand the physics of rapidly rotating storms. The development of a bal-
ance model for hurricanes spanning the inner—core to the environment is generally difficult
due to the lack of a clear time—scale separation between advective and gravity—inertia wave
processes in the near—core region of an intense vortex. A solution to the scale problem
employing a balance model approach was proposed by Shapiro and Montgomery (1993;
hereafter SM) as asymmetric balance (AB) theory. The formulation involves an ordered
expansion about a local Rossby number which reduces to quasi-geostrophic theory in the
environment and Eliassen’s (1951) balance vortex model for purely axisymmetric flow.
The zeroth—order expansion is formally valid for wavenumber one in the rapidly rotating
portion of the vortex. Validation of the zeroth—order truncation for high-wavenumber
asymmetries (n > 2) is a major objective of this study.

In a study of vortex motion, Willoughby (1992) described the positioning errors be-
tween the cylindrical grid center and the vortex center as “alpha gyres”. The alpha gyres
have the same radial structure as the mean tangential wind. In a stationary grid, for
the nondivergent barotropic vorticity equation, Smith énd Montgomery (1995; hereafter
GSM) identified the long—term wavenumber—one solution as the “pseudo mode”. Inter-
estingly, the pseudo mode has the same radial structure as the mean tangential wind. Is
there significance in the similarity between the alpha gyre and the pseudo mode? If so,
will understanding the connection between the two concepts prove useful in understanding

vortex motion?




Early weather surveillance radars revealed outwardly propagating banded features
throughout the hurricane (e.g., Senn and Hiser 1959). More recent radar studies confirm
outwardly propagating bands near the eyewall (Tuttle and Gall 1995). In addition to
observations that identify outward propagation, many observational studies lacking suffi-
cient temporal resolution nonetheless show evolving fine-structure throughout the vortex
(e.g., Black and Willoughby 1992; Barnes et.al. 1983). A particularly noteworthy feature
of the Black and Willoughby study was the observation that secondary eyewall formation
was accompanied by small-scale fluctuations in the tangential wind. These observations
raise unanswered questions concerning the existence of fine-scale, outwardly-propagating
waves accompanying the symmetrization process.

In this thesis it proves convenient to define three regions of the vortex. The inner-
core is the region inside the Radius of Maximum Wind (RMW). The near—core extends
from just inside the RMW to the radius where the basic state potential vorticity (PV)
gradient is small. The outer—core region overlaps the near—core and extends into the

quasi-geostrophic (QG) regime where the Rossby number is small compared to unity.




Chapter 2

AB FORMULATION IN SHALLOW WATER VORTEX DYNAMICS

2.1 Introduction

The primary challenge of hurricane modeling, dynamics, and forecasting is the dis-
parity of scales involved (Kasahara and Platzman 1963). One approach solves the scale
difficulty by using nested grid models (e.g., Shapiro and Ooyama, 1990; Pielke et al,
1992). An alternative and equally useful solution to the scale problem is to apply balance
principles that retain the meteorologically significant motions yet filter gravity—inertia
waves. The development of a hurricane balance model spanning the entire vortex, from
the inner—core to the environment, is difficult, however, due to the lack of a clear time-
scale separation between advective and gravity-inertia wave processes in the near—core.
SM solve the scale problem by employing a balance model which is uniformly valid from
the rapidly rotating core to the environment. The theory is called AB and was developed
for a baroclinic, continuously stratified vortex.

In this thesis AB theory will be developed and validated for shallow water vortex
dynamics. Although the physics of the shallow water model is essentially the same as the
baroclinic model, it is mathematically simpler and proves useful in elucidating fundamen-
tal processes in rapidly rotating vortices. To keep the physics simple, we formulate the
linear model assuming f-plane and inviscid dynamics. A stationary coordinate system is

adopted.




2.2 Governing Equations

The radial momentum, tangential momentum, and continuity equations for the shal-

low water system in cylindrical coordinates are, respectively,

ou ou vou v? a¢
v Ty ST T T T 21
ov ov vov w  10¢
ati Tra vt T T ey (2.2)
o¢ ¢ v0¢P (18(7‘1&) 10v\
8t+u87"+r8/\+¢ r Or —*-7‘8/\)_07 (2:3)

where r and \ are the radius and azimuth, v and v are the radial and azimuthal winds, f
is the constant Coriolis parameter, and ¢ is the geopotential that equals the free-surface
height multiplied by gravity.

Since intense atmospheric vortices often exhibit weak asymmetries (SM), linear per-
turbation theory is applied about an axisymmetric basic state of swirl. Let u = o,
v="o(r)+7, and ¢ = ® + ¢, where an overbar denotes the circularly symmetric basic
state and a prime denotes asymmetric departures from the basic state. Neglecting prod-

ucts of primed quantities and defining the linear derivative operator following the basic

state swirl as

D_vaﬁa

Dt = ot tron 24)
the linearized momentum and continuity equations become
Dy , ., , 2, 8 .-
Dr Y fo—fv U= (+¢), (2.5)
P_L / r@ / E I _1 2 = /
Dtv+ud7‘+fu+ru— 7‘8)\(@-*-(;5)’ (26)
Dy , ,d® - (1 o(ru) 100\ _
Dt¢+udr+ r Or +7‘8/\)__0' (2.7)

Since the basic state alone must satisfy equations (2.1) - (2.3), the momentum equations

imply

_ #t 0d
fU+ _7: - E:, (2'8)

E;
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The preponderance of observational evidence supports the gradient wind balance approx-
imation, (2.8). As one example, Willoughby (1990b) showed the mean tangential wind for
a large sample of Atlantic storms was within 1.5 ms~! of gradient balance.

After substituting the basic state relations (2.8) and (2.9) back into the disturbance

equations, the linearized equations simplify to,

DV ! gl a¢/
Dr Y v = 5 (2.10)
Dy , _, 18¢
Dtv +u = T (2.11)
and
Dy , = <13(ru') l&v') 4%
—thﬁ +@ o +T~——a)\ +u o =0. (2.12)

In (2.10)—(2.12), f denotes a constant Coriolis parameter, ¢ = r~1d(rv)/dr the basic state
relative vorticity, 7 = f + ¢ the basic state absolute vorticity, ¢ = f + 29/r the inertial

parameter, and {2 = ¥/r the basic state angular velocity.

2.3 AB Formulation

The AB shallow water formulation parallels the continuously stratified, baroclinic
formulation of SM. The shallow water formulation may be thought to result from taking
8/8z = 0 and replacing N2 by ¢2®~1

Instead of taking V- and Vx of equations (2.10) and (2.11) and neglecting the di-
vergence tendency, we follow the approach of SM and neglect gravity—inertia waves at
the momentum level. The gravity-inertia waves are revealed upon differentiating (2.10)
and (2.11) with respect to %tL and cross substituting. The result is an equivalent set of

momentum equations in the radial and azimuthal directions, respectively,

Dy? -\, €3¢ Dy (04

(Dt2 +77§)u ——;a—gg(w) (2.13)
and

Dy? -\, 8¢ Dy (184

Here —DB%; represents a generalized acceleration operator. Equations (2.13) and (2.14)

are therefore qualitatively similar to the forced harmonic oscillator with 7€ serving as an




effective spring constant. When the forcing frequency is smaller compared to the intrinsic
frequency, we expect that the acceleration term may be neglected.
The scaling of %%; is the key to filtering the gravity-inertia waves on a rapidly

rotating vortex. SM scale %‘%; with the advective time scale,

Dy? L%t
where n is the azimuthal wavenumber. It then proves convenient to define
2
bl
D? = 2L (2.16
U3 )
and from equation (2.15) we see
n2g? [r?
D2~ —+F— =R2, 2.17
77{ n ( )

the square of the local Rossby number for wavenumber n. The smallness of the local
Rossby number then justifies neglecting the acceleration term in equations (2.13) and
(2.14).

As the basis of the AB formulation, it is instructive to examine the effect the tangential
wind profile has on the magnitude of R2. The “stiffness” of the system, and equivalently

the frequency of the unforced response, increases with increasing inertial stability
7€ = f(f +2Q + {) +20C. (2.18)

The vortex is inertially stable when 7€ > 0. Substituting (2.18) into (2.17) elucidates the
importance of the symmetric wind structure in determining the size of R%. The result is
11 f 3 1d6> ( ldﬁ)]

— T — — = + = 2 1 = . 2'19

R nz[f(92+9 o) TPt aw (2.19)
The effect of the vortex structure may be readily illustrated for tangential wind profiles of
the form, 7 = ar®, with a > 0 for a cyclonic vortex. SM show that for rapidly rotating

vortices, R2 is independent of the magnitude of 7, so without loss of generality we may

set @ = 1. With the assumed structure of 7, equation (2.19) becomes

_}%2_ _ n—li [f (f,r(b+1) +(3— b)) PO+ 901 — b)] , (2.20)




For f = 0, the vortex is inertially unstable for b > 1; the vortex is inertially neutral for

= 1; while the vortex is inertially stable for b < 1. Intense vortex evolution is therefore

not amenable to a balance model formulation with b > 1. For inertially stable vortices

(b < 1), equation (2.20) shows the presence of f further increases the inertial stability
which serves to decrease R2.

In the inner—core, the hurricane is in approximate solid body rotation. With b = -1
and f = 0, equation (2.20) simplifies to R2 = ’2—2. In particular forn =1, R? < 1.

Riehl (1963), and Pearce (1993) suggest a simple reason for why the decay exponent
satisfies 0 < b < 1/2 outside the RMW in hurricanes and typhoons. In order for PV
to remain unchanged outside the eyewall region, the curl of the frictional force on theta
surfaces must vanish. Assuming quadratic surface then drag implies ¥ o< =12 for a steady
state vortex. For f = 0 and b = 1/2, equation (2.20) simplifies to R2 = n®. Any positive
value of f will then make R? < 1. For observed and theoretical tangential velocity profiles
with —1 < b < 1/2 and realistic values of f, the series should converge for wavenumber
one (cf. figure 3 of SM).

The n? dependence of R2 suggests the possible divergence of the asymptotic series
for high wavenumbers. An important objective of this work is to examine the consistency
of the AB formulation in the evolution of high wavenumber asymmetries on a stable
hurricane-like vortex, explored at length in chapter 3.

From the definition of D2, equations (2.13) and (2.14) can be formally written as

v I+D? Lar ox @t Dt\or/] (2:21)
1o 1T [l_&qﬁ' _1Dyv (l_é‘ﬁlﬂ
VT TyDe | E0r @fEDt\rox)/l’ (2:22)

o
where 7 is the identity operator. As long as D? < 1 the binomial theorem for linear

operators allows us to expand equations (2.21) and (2.22) in a series,

2
o =ul — D%l + (D2) ul — ... (2.23)




and

2
v =, — D% + (Dz) vh—... . (2.24)

For simplicity; this work focuses exclusively on the zeroth—order term in the series and the
zero subscript will be dropped. This zeroth-order truncation will henceforth be referred
to as Asymmetric Balance (AB).

The polarization equations for the balanced wind components are:

1 !

u v
1 n8¢' 1D 1 8175’
/ v
= == == (z=), 25
v 7rox 7Dt (g ar) (225)
— N -~ "
“Geostrophic” “Isallobaric”
and )
v u’n
, 1 8¢’ 1Dy 1 9¢
v = 5 8'!‘ +E—E (—‘ﬁ;—a—x> . (2.26)
—— ~ — ~
“Geostrophic” “Isallobaric”

The “Geostrophic” and “Isallobaric” terms are generalizations of the geostrophic wind
and isallobaric wind from QG theory (cf. Gill 1982).

A useful diagnostic equation comes in the form of the geopotential tendency equation
which is the forecast equation for the AB system. Substituting (2.25) and (2.26) into

(2.12) gives,

%V;¢’+<T>[%%(--¢A fg%‘;¢)+i<§>\(£¢r nlé%{%b

Ly 1Dv /)@_
t(-mh-prd) =0 e

with subscripts 7 and A denoting partial differentiation. Expanding terms involving mixed

partials of ¢’ results in

¢ [%%%:%+?v n"é\; (:-1)‘ l;\; (T or {:742}-*— jg?l%)jl
0

_# 1Dy I)d‘b
+< DL




The swirl identity, £ — 7 = —rd{}/dr, simplifies the under-braced terms involving ¢}, to

Zero:
Pra ['—7—% + —1—7*& - ﬁlﬁ_% (%)] =
A0l
= [T?id? (;) B Td% (':')] =0 (2.29)

The appropriate inverse square of the Rossby deformation radius is 7 = 7€/®. Upon
defining the basic state potential vorticity as § = 7/ &, and multiplying (2.28) by 7° gives

a compact geopotential tendency equation:

Dy |39 (7 3¢') 18% ., |  €9¢'d7 _
Dt [7‘ ar (72 or) T e T Trgonar (2.50)
In (2.30), 2% acts on a second-order differential operator V3, — 42 defined as
¥ 0 (r 8 1 82
vz, -3?) =12 (—-—> 1o 5 .
( AB 7) r Or \32or toEae 7 A (2.31)

If the vortex is inertially stable (7€ > 0), the operator V2, — 7% is elliptic and unique
solutions are guaranteed. Also significant is the parameter %% which provides a smooth
transition from the rapidly rotating regime of the inner-core to the slowly rotating envi-
ronment.

The forecast equation results upon expanding %tL, and isolating d¢'/dt. The result
is

ad’l _ 2 _2\! f_aﬁbl dg U 2 =2 (9¢'
o= (" =7) |rpara 5 (e ~7) 55 )

Knowing ¢' at ¢t = 0 along with boundary conditions for 8¢'/dt allows ¢’ to be stepped

forward in time.

2.4 Analogous Conservation Laws

As a verification of formal consistency, several conservation laws analogous to those

of the linearized PE may be derived.
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2.4.1 Momentum

Multiplying (2.26) by £ and (2.25) by 7 gives the radial and azimuthal pseudo-

momentum equations, respectively:

D = ¢/
D _ 10¢

2.4.2 Energy

A disturbance energy equation follows upon forming the combination,

@ ! / !
5 (g x (2.33) + vy X (2.34)) + o (2.12), (2.35)

to yield,

Dy E 1o ‘14 (¢I)2 ﬂ 19 =, laév,
Di [29 (ugun+v§vn)+ % +g ~5 (7‘<I>u)+r E5)

Ter‘rzl A Ter‘nTB
é =~ 1 1 ) @ ! 8¢, /v:7 8¢I —
:}—E [nuvn—-év ue]J ; UEE—F?_@T =0.
Term C Term D

(2.36)

~

Term A represents the disturbance energy (kinetic plus potential) integrated over the fluid

depth. Terms B and C combine to

d, -
V. <—¢'u’) , (2.37)
g
a depth integrated pressure work term. Recalling the swirl identity simplifies term D to
&, , d0
P Vgl (2.38)

a depth integrated Reynolds stress. Integration over the entire vortex then gives a bulk
measure of the asymmetries. Assuming ¢’ W — 0 as 7 — oo and recalling ¢'(r = 0) = 0,

the boundary terms vanish leaving

P 27 oo (i (¢,)2 27 oo (i) dQ
—_ Rl i 1.1 - _ @, dQ
gy 0/0/ [29 (ugun +v£'u,7) + % ] rdrd\ O/D/ [gvgunr dr] rdrdA. (2.39)

A useful model diagnostic is therefore the integrated disturbance energy

2 0 =

E(t) = // [% (u'ﬁui7 + vévi,) + (%lg)i] rdr d\. (2.40)
00
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2.4.8 Potential Vorticity

As a further check on the formal consistency of the AB shallow water formulation, a
PV conservation principle may also be derived. Expanding 9/9r and grouping terms in

equation (2.30) gives,

e[ 2 () -4 (32 -)

D, (3¢ [10 187 04 dg
+3t— { [f ar 32 or ] } rq O dr =0. (2:41)

In analogy with SG theory, it proves convenient to define a pseudo-momentum per unit

mass

RSHT

u

_ (194 19¢'
= <r§_ 3)\’5_67')’ (2.42)

along with a corresponding vertical vorticity,

¢t=k Vxul (2.43)

On dividing equation (2.41) by £®, and using the definitions for ¢/ and g, the forecast

equation may be succinctly expressed as a linearized conservation law for pseudo PV

Dy ,  ,dg
Srl v =0, (2.44)
where
G ¢
g = gf -z (2.45)

is the pseudo PV and u' is gotten from (2.25). The definition for g; is analogous to
disturbance PV in the linearized PE shallow water model. The first term represents the

flow component of PV and the second term represents the mass component.
2.4.4 Vorticity
The AB vorticity equation follows upon taking the horizontal curl of the pseudo-

momentum equations, (2.33,2.34):

dn _[10 16V

_ - !
Ce 7 ar (re) + 7 N (2.46)
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2.5 Summary

The AB shallow water formulation presented above parallels the baroclinic formu-
lation of SM. The formulation is mathematically simple yet will be shown to effectively
illustrate fundamental processes in rapidly rotating vortices. The formal consistency of
the AB formulation was demonstrated by formulating conservation laws and diagnostic
equations analogous to those of the linearized PE system. These analogous formulations
include a geopotential tendency equation, pseudo-momentum equations, an energy equa-
tion, potential vorticity conservation, and a vorticity equation.

For the balance formulation to be useful, however, the consistency of the zeroth—
order dynamics must be demonstrated for high wavenumber asymmetries. The issue of

the possibly diverging series solution should also be addressed.




Chapter 3

AB VALIDATION THROUGH SYMMETRIZATION

3.1 Introduction

This chapter demonstrates the consistency of the AB formulation in forecasting high
wavenumber (n > 2) asymmetries on a stable hurricane vortex. The need for this
demonstration was foreshadowed in section 2.3 where the basis of the AB approxima-

tion, QD%; < 7 £, hinged on the smallness of the local Rossby number squared

R = n2v? [r?
n 175 b

(3.1)

where n denotes the azimuthal wavenumber.

Based on observations of hurricane Gloria (1985), SM showed that the local Rossby
number for wavenumber one is less than unity throughout the hurricane vortex. The
series expansion should therefore converge for wavenumber one. For hypothetical cases of
high wavenumber excitation, the n? dependence of R2 suggests the local Rossby number
expansion may indeed diverge. Figure 3.1 illustrates the dependence of R? on n? and 9(r)
for the benchmark hurricane-like vortex discussed in further detail in section 3.2. Such
considerations together with the knowledge of the behavior of sheared disturbances lead
SM to speculate high wavenumber asymmetries would nevertheless be rapidly damped
through vortex axisymmetrization and the zeroth-order balance formulation would still
correctly predict the eddy-momentum and eddy-heat flux effects on the mean vortex. In
this chapter we take the first step towards this by examining the linearized dynamics for
azimuthal wavenumbers n > 2.

The source for high wavenumber asymmetries in hurricanes is continuous forcing by

environmental and/or internal processes. To illustrate, a Taylor series expansion about the
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Figure 3.1: Local Rossby number squared for azimuthal wavenumbers one through seven
for the benchmark vortex. Note the logarithmic scale on the y-axis. Only the inner
1000 km of the 3000 km domain are shown.

center of the vortex (Willoughby 1992) reveals that a horizontal deformation flow projects
onto wavenumbervtwo, while a deformation gradient flow projects onto wavenumber three.
Small-scale cumulus convection, on the other hand, is believed to excite a continuum of
responses. The cold wake in SSTs caused by Ekman pumping in the oceanic boundary
layer projects onto a wavenumber two component by altering the strength of convection
at certain locations. These are just a few of the various asymmetric forcings that act on
a hurricane during its life cycle. As a first step towards understanding the evolution of
high wavenumber asymmetries that are continuously forced, this work assumes a quiescent
environment at the boundaries and examines the evolution of asymmetric conditions from

the perspective of an initial value problem.

3.2 The Vortex Model

To meet the stated objectives of this chapter, the benchmark vortex will possess large
Rossby numbers. The vortex is then initialized with asymmetric disturbances 2 <n <7
on an f-plane whose maximum amplitude resides near the maximum of R2. For the linear
formulation considered in this section, the benchmark vortex will remain stationary for

the duration of each model run.
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8.2.1 The Basic State

As discussed in chapter 2, the circular vortex is assumed to be in gradient wind
balance. Consequently the basic state geopotential and related quantities are functions of

r only. Gradient balance,
e 2
- =i+ (3.2)

and the definition of the basic state PV,

f +’l—)/7‘~+ duv/dr

= : (3.3)

(j_—_

R 30

allows one to uniquely characterize the basic state by specifying v, g, or o.

In order to guarantee both inertial and shear stability in the slow manifold, we restrict
attention to monotonically decreasing, infinitely differentiable, positive functions for g(r).
The § profile chosen for the benchmark vortex results in a tangential wind profile ¥ « r1/2
in the outer—core region of the vortex. This tangential wind profile satisfies the conditions
for a quasi-steady hurricane vortex under the effects of surface friction, (Riehl 1963; Pearce
1993; Willoughby 1990a). This profile also ensures that R? < 1 throughout the vortex.
The benchmark vortex scales as a minimal hurricane with the maximum tangential wind of
36.8 ms~! located at 75 km. The model setup assumes a resting depth of 1 km, a Coriolis
parameter f = 5 X 10~5s~L, and an outer boundary of 3000 km. Figure 3.2 shows the
inner 1000 km of several basic state quantities. The deformation radius in the inner—core

region is 41.4 km, a value consistent with the first internal mode for hurricanes. Figure

3.1 shows that R2 is large in the near—core region for wavenumbers 2 <n < 7.
3.2.2 Initial Conditions

The initial geopotential necessary to begin the model forecast is obtained from the

disturbance PV using the invertibility relationship,

~

29 __)_"_2

_ 1 ¢
%= Fror £ Or r2 qi)' (3-4)

For a given radial structure of g¢, (3.4) is solved for $ using a tridiagonal solver assuming

that ¢ vanishes at both 7 = 0 and r = 7. The n? dependence in the invertibility
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Figure 3.2: The benchmark vortex: ¥ the tangential wind; ® the geopotential for a fluid
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problem implies that for similar PV disturbances, both the amplitude and the radial
extent of the geopotential response will decrease with n?.

Unlike g% which must behave like 7™ for small 7, the disturbance PV need not be zero
at the origin. This allows us to use a generic Gaussian profile of the form ge(r) = Ao X
exp(—(%fk—)z) where A, denotes the amplitude of the perturbation, 7. is the radius
of the maximum amplitude, and 74, is the e—folding distance. The initial asymmetries
are upright with respect to the local shear. Such initial conditions permit side-by-side
comparisons of AB symmetrization with symmetrization in other research models (e.g.
Carr and Williams (1989), or GSM).

The vortex is initialized with the identical radial structure of ¢ for wavenumbers two
through seven using .. = 75 km (the RMW), A, = 2 X 10~8sm~2 (7% of the basic
state), and Tiq = 75 km (the characteristic scale of the vortex). Figure 3.3 shows map
plots of qé and ¢' for wavenumbers two through four. As evident from figure 3.1, the
asymmetries are placed in a region where R? > 1. Not shown are plots of wavenumbers
five through seven which exhibit similar qualitative relationships between q’5 and ¢'. Figure
3.4 shows the radial profile of |§¢| and the resulting |<25‘ profile for wavenumbers two through

four. Similar to the map plots, the radial plots confirm the solution dependence on n2.

3.3 Inner—Core Symmetrization

Analytical models are extremely useful for demonstrating and quantifying the inviscid
physics of symmetrization since they avoid the complexities of time-stepping schemes. The
AB model has demonstrated the robustﬁess of the symmetrization process to differing
strength of horizontal diffusion. The robustness of asymmetric decay is in accord with
analytical work that conclusively shows the inviscid nature of the symmetrization process
(GSM; Carr and Williams 1989; Melander et al. 1987). In particular, GSM provide

concise, quantifiable results with which to make comparisons.
3.3.1 Model Comparison

Because the initial asymmetries have significant amplitude where R? is maximum, this

is perhaps the harshest consistency test of the linear AB model for high wavenumbers.
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Since wavenumber one is zero for the simulations of this chapter, the vortex will remain
stationary in the linear f-plane formulation.

GSM examined solutions of the non-divergent, vorticity equation in cylindrical coor-
dinates, linearized on a circular vortex in gradient wind balance. Defining a perturbation

streamfunction, v that satisfies continuity,

_ oy _ oy
o YT (3:5)
the nondivergent vorticity equation can be expressed as,
8 wo\|18 /[ 0 n? 1d7j 9y
(w+7a) [;5 (%) “ﬁ] Vraoax (36)

~

~~

¢

The vorticity equation (3.6) may be nondimensionalized by defining r = (RMW)7;
(1,3) = Vipax (@1, 8); £ = (RMW/Viao )5 (¢,7) = (Veuan /RMW)((,7); and X = X where
tildes denote dimensionless quantities.

In the search for useful analytical solutions, GSM formulated two models: The
bounded and unbounded Rankine vortex. The bounded Rankine vortex model had a
boundary at the RMW and ten times this radius (CW), r = a and r = b respectively.
The basic state wind is irrotational, consequently, the bounded Rankine vortex has no
basic state vorticity gradient. The Laplace transform of (3.6) is then easily inverted to

give

o ( d 2. 2 (iant/r?
[1 ar ( _> - %] = () = rloel /). (3.7)

- r
rdr \ Or
The Green’s function method yields an explicit solution for the stream function,

b
P (7, A 1) = €™ / G(r, p)Coe=57") pdp, (3.8)

a
where the Green’s function is defined as,

1 (p" = ¥*"p~")(a®" = 1), a<r<p
2nrn(a?n — b2n)

G(r,p) = (3.9)

(pn - a2np—n)(b2n — 7.211), p <r< b.
Vorticity and streamfunction fields for the bounded Rankine model are shown in figures

3.5 and 3.7.
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The second of the analytical models, the unbounded Rankine vortex, differs from the
unbounded model by including a uniformly rotating core inside r = a. In the unbounded
vortex the basic state vorticity gradient is confined solely to the RMW where it is infinite.
During symmetrization, vorticity anomalies induced by radial flow are confined to the
RMW . Because of the singularity in the disturbance vorticity associated with the Rossby
edge wave at © = a, only streamfunction fields are shown for the unbounded Rankine
model. Further discussion on the nature of the unbounded solution is reserved for section
4.3.

In contrast to the above models, the AB model possesses a non-trivial but finite basic
state PV gradient throughout the vortex with the maximum occurring inside the RMW.
The region that rotates as a solid body collapses to a single point, »r = 0. Thus, inside the
RMW the basic state rotation rate decreases faster than the unbounded Rankine profile.
Outside the RMW, on the other hand, the rotation rate falls off more slowly than the
Rankine profile.

The first column of figure 3.5 shows the initial perturbations of the GSM and AB

models are similar.
3.3.2 Map Plots of Decaying Asymmetries

GSM showed the decay rate of asymmetries in a swirling flow is inversely propor-
tional to the effective shear, S.¢ = 7dQ)/dr. We therefore expect the Rankine profile to
symmetrize faster than the benchmark vortex outside the RMW.

Figure 3.5 compares vorticity to PV; and figures 3.7 and 3.6 compare geopotential to
streamfunction in the AB and nondivergent models, respectively. Results shown are for
wavenumbers two and three. Higher wavenumbers (n > 3) evolve similarly and are not
shown.

Figure 3.5 compares symmetrization in the GSM and AB models using initially up-
right vorticity/PV disturbances for wavenumbers two and three whose amplitude is max-
imum at the radius of maximum winds. The first two rows represent wavenumber two
and wavenumber three runs for the GSM model. The last two rows represent wavenumber

two and wavenumber three runs for the AB model. Columns correspond to roughly 0,
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Figure 3.5: Perturbation vorticity, ¢’, in the GSM model for the bounded vortex using a
contour interval of 6.90 x 10~2 (first two rows). The perturbation potential vorticity, qé,
in the AB model (last two rows). Columns correspond to roughly 0, 1/2, and 1 circulation
times in both models. The horizontal domain corresponds to four RMW units in both

models.
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1/2, and 1 circulation times in both models. The horizontal domain corresponds to four
RMW units in both models. It is evident symmetrization in the AB model is very similar
to the GSM model. The most noteworthy difference is the fine structure which develops
in the near—core region of the AB model. Because the AB model has a basic state PV
gradient, radial flow across this gradient creates PV anomalies. This effect diminishes with
increasing wavenumber. The significance of this process is further explored in section 3.4.

The variable deformation radius of the AB model complicates the comparison between
the streamfunction fields of the GSM model, figure 3.7, and the geopotential fields of the
AB model, figure 3.6. The complication arises from the fact that the geopotential is
not the streamfunction for the AB wind field. The varying deformation radius partitions
the PV disturbance between the flow field and the mass field, smoothing the resulting
geopotential field. Keeping these considerations in mind, the comparison nonetheless
reveals a qualitative similarity.

GSM provide streamfunction plots for both the bounded and unbounded models,
figure 3.7. While the bounded model exhibits long streamfunction filaments near the inner
boundary, the unbounded model has a more complicated pattern in the inner—core. This
results from radial flow across the basic state vorticity discontinuity at the RMW creating
Rossby edge waves. The edge wave then induces a streamfunction response straddling the
RMW . The streamfunction response in the solid body rotation portion of the vortex lies
in a region of zero effective shear and consequently can never symmetrize. In contrast,
asymmetries outside the RMW will symmetrize. The plots of ¢’ at ¢ = 2 hrs (figure 3.6)
and ¢ at t = 3.6 in the unbounded model show the same amount of downshear tilt of the
asymmetry.

These comparisons are encouraging testimony in the AB model’s ability to correctly
represent the symmetrization process at high wavenumbers. To complete the comparison,

a more quantitative measurement is desired.
8.3.9 Integrated Emnergy Decay

When the normalized integrated energy is evaluated for the near—core initial condi-

tions, all asymmetries are observed to decay to roughly 10% of their initial energy after
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horizontal scale shown is 10 RMW units.
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Figure 3.7: Perturbation streamfunction in the GSM model for the bounded (top two
rows) and unbounded (bottom two rows) vortex for wavenumbers two and three. For
n = 2 the contour interval is 5.67 x 10~3. For n = 3 the contour interval is 3.31 x 1073.
Columns correspond to roughly 0, 1/2, and 1 circulation times. Note the fine scale in the
inner—core for the unbounded vortex.
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approximately 5 hours (= 2 circulation times). Moreover, the decay rate increases with
wavenumber and eventually asymptotes. To better understand this behavior, we recall
what was learned in the nondivergent model.

Utilizing a Green’s function method, GSM derived explicit solutions for integrated en-
ergy in linearized nondivergent inviscid vorticity dynamics. In the limit of large azimuthal
wavenumbers the integrated energy decay approaches the decay for an unbounded plane

wave in rectilinear simple shear:

E 1
= —. 3.10
Eo 1+ (Set)? (310)

GSM suggested a plausible candidate for the effective shear, S.s, which would define the
limiting energy decay rate as n — oo for the Rankine vortex. For the AB model, the GSM

expression for S.s is,
o0 =
[ r%%dg(r) dr
S =2 (3.11)

Ge(r) dr

o3

and evaluates to, —3.67 x 10~%s~1. This compares to the dimensionalized effect-ive shear
calculation used by GSM in the lower panel of figure 3.8 of —4.98 x 10™*s~'. From
figure 3.9 we see the limiting decay rate for the Rankine vortex is faster than that of
the benchmark vortex used in the AB model. An exception occurs where the normalized
energy plots cross the limiting decay curve at around 4.5 hrs. This may be explained
by the finite deformation radius of the AB model. As the symmetrization proceeds, the
radial scale gets very small and the finite influence scale rapidly smoothes these small scales
resulting in reduced energy. The demonstration that asymmetric decay in the AB model
asymptotes to the limiting decay curve confirms the speculation that AB symmetrization
proceeds nearly inviscidly.

Direct comparison between the two models for wavenumbers two and three is made
in figure 3.8. The comparison shows good qualitative agreement between the two models
with two notable differences. The first of these differences is the decay in the AB model
exceeds the decay in the GSM model after about 3 hrs. As noted above, the faster decay

rate of the divergent AB model over that of the non-divergent GSM model at long times
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Figure 3.8: Normalized energy decay for an inner—core asymmetry of the AB model (top)
and the GSM model (bottom). The GSM curves are the energy decay for: n = 2 (dash),
n = 3 (dot dash), and the limiting energy decay calculated from the effective shear of
the Rankine vortex (solid). The characteristic time scale for both plots is roughly two
circulation times.
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is attributed to the finite deformation radius which smoothes out short wavelength radial
fluctuations. The second difference is the very slow decay rate of wavenumber two in the
AB model at short times. CW speculate the symmetrization process would be delayed in
a vortex with a basic state vorticity gradient due to differential wave retrogression from an
equivalent “g effect” in analogy to the behavior of sheared disturbances in Couette flow on
a B-plane. Detailed examination of the evolution of wavenumber two , however, suggests
this is not the cause for the delayed decay. The cause is radial flow giving an effective
upshear tilt to the asymmetry discussed more thoroughly in section 3.4. The region and

magnitude of growth is radially confined delaying the asymmetric energy decay.

3.4 Outer—Core Symmetrization and More

3.4.1 Initialization

As in section 3.2.2 the initial disturbances have Gaussian radial structure in ge.
Wavenumbers two through seven are again considered using 7,.. = 200 km and

Tiold — 100 km.
3.4.2 Integrated Energy

Figure 3.10 suggests the evolution of the outer-core asymmetries is significantly dif-
ferent from the inner—core asymmetries. In particular, wavenumber two grows to 137%
of its initial value in 3 hrs and subsequently decays. Wavenumber three also undergoes
a brief growth cycle. Wavenumbers four through seven decay monotonically and behave
similarly to the inner-core case. One might assume the growth is a result of the diverging
series expansion used to derive the AB model. However, the growth pattern of figure
3.10 is not consistent with this assumption. First, if the growth were the result of the
expansion parameter being large, one would suspect that the highest wavenumbers would
grow the most. Secondly, to further examine the nature of the growth, we put the initial
asymmetries at 1500 km, in the QG regime. This region was chosen because both local
and environmental Rossby numbers are < 1 for wavenumbers two through seven. There-

fore, if the growth is a result of the diverging series solution, these asymmetries should
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monotonically decay. Instead, wavenumbers two and three grew more than they did at
200 km and wavenumber four grew slightly as well. Not surprisingly, the asymmetries
evolved very slowly in response to low shear at that region with the growth/decay cycle
taking much longer than the case at 200 km. To better understand the physics of the
observed growth, we now examine three fields of the growing wavenumber two asymmetry

initialized at 200 km.
3.4.8 Origin of the Transient Growth

To elucidate the growth process observed in subsection 3.4.2, the evolution of
wavenumber two is examined more closely. Figure 3.12 is a time series showing three
fields; perturbation potential vorticity, perturbation geopotential, and Reynolds stress.
The results are shown for three times: initially, at the start of the growth cycle, and
during the decay cycle. Of the three fields shown, the Reynolds stress field warrants more
discussion.

Recall the formulation of the analogous Reynolds stress term and its relation to
disturbance energy tendency. Equation (2.36) shows the change in disturbance energy
at a point has three contributions; advection by the basic state, work done by pressure
forces, and the Reynolds stress times the product of the column height and the effective
shear. Integrating over the entire domain eliminates the first two contributions. It will
prove useful, therefore, to investigate the spatial distribution of the Reynolds stress in
order to identify regions of the vortex which might favor growth or decay. Figure 3.11 is
a plot of the basic state portion of the Reynolds stress growth term including the minus
sign and metric factor r, -%ﬁ%?—. This function may be interpreted as indicating the
most favored location for energy exchange with the basic state. The radius where the
benchmark vortex is most susceptible to interactions with disturbances by the Reynolds
stress is outside the RMW at 130 km. The potential for interaction quickly falls to zero
in the inner—core and falls to 25% of peak value by 1000 km. This basic state quantity
then multiplies ugvé to get the Reynolds stress contribution to the asymmetry energy
tendency. The quantity u;,'vé is positive when the asymmetry fluxes cyclonic momentum

out of the vortex or anticyclonic momentum into the vortex. For an everywhere positive
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o, the asymmetry grows. The quantity u;,vé is negative when the asymmetry fluxes
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cyclonic momentum into the vortex or anticyclonic momentum out of the vortex resulting
in asymmetry decay.

The first column of figure 3.12 are the initial wavenumber two fields. The PV distur-
bance induces the geopotential disturbance of the second row. The disturbance geopoten-
tial then has an associated balanced wind but initially the Reynolds stress gives no net
asymmetry decay or growth. This has been confirmed by integrating the Reynolds stress
field around any radial circle and finding it to be zero. This benign pattern will rapidly
change in response to the deformation flow associated with the initial asymmetry.

After 1 hr the radial flow has forced PV anomalies near 60 km, the radius where the
gradient of the basic state PV is maximum. The invertibility relationship then produces
a geopotential response possessing an upshear tilt (cf. Farrel 1982; also Boyd 1983). The
upshear tilt is limited to approximately half of an azimuthal wavelength. This lixl‘nits the

degree of upshear tilt and the amount of algebraic growth which can be realized from

an initially upright asymmetry. The Reynolds stress contribution to the energy tendency
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shows net growth at 7 = 130 km and is maximum near the zero value contour of the
geopotential field. Also noteworthy in the Reynolds stress plots is the fact that outside
of 200 km, there is still no net growth/decay. This is consistent with the fact that the
geopotential has changed only slightly from the initial condition.

In contrast to the plots at t = 1 hr, the plots for ¢ = 6 hrs show a decaying asymmetry.
The inner—core asymmetry has rotated 135° while the outer asymmetry has rotated less
than 90°. The differential rotation has reversed the upshear tilt to a downshear tilt. The
fine structure of the disturbance PV field is the result of the inner—core response to quasi—
steady forcing from the slowly decaying outer asymmetry. In terms of the Reynolds stress,
the decay occurs at two distinct radial locations. Higher time resolution plots reveal the
nature of the two decay regimes. The decay maximum at 260 km corresponds to the
decaying initial asymmetry. The other maximum occurs at 200 km coinciding with the
radius that separates the inner and outer asymmetries of the disturbance PV at t = 6 hrs.

The azimuthal motion of the PV asymmetries differs from that of the storm’s rotation
rate. Experience has shown that the azimuthal motion is a complex function of n, the
radial scale, the basic state PV profile, and the basic state tangential wind profile. Exami-
nation of the parameter space for the azimuthal group velocity derived in chapter 5 reveals
an effect which changes the evolution of the upshear/downshear tilt geometry. Relative
to the basic state, the azimuthal group velocity tends to have the largest positive values
in the inner—core and near—core and has small positive or even negative values at larger
radii. This difference becomes more significant with increasing wavenumber. This effect
accelerates the reversal from upshear to downshear tilt, further limiting the potential for

algebraic growth of high wavenumber asymmetries.

3.5 Summary

In this chapter the AB model has been validated for high wavenumber asymmetries on
a stable vortex, specifically wavenumbers two through seven. Despite the formal divergence
of the asymptotic series, the zeroth—order truncation accurately evolves high wavenumbers.
The AB model was validated with a side-by-side comparison using bounded and

unbounded analytical models for nondivergent vorticity dynamics. Dynamical quantities
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Figure 3.12: Map plots of g;, ¢/, and Reynolds stress (upve) for wavenumber two showing
transient growth for an outer—core asymmetry.
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showed excellent agreement between the AB and GSM models. The limiting decay as
determined by the effective shear predicts the limiting decay as n — oo for the AB model.
Most of the differences between the two models can be traced to the variable deformation
radius and the smoothly changing basic state PV gradient of the AB model. The variable
deformation radius accelerates the energy decay by smoothing the small radial scales that
occur during the symmetrization process. Radial flow across the basic state PV gradient
produces small scale PV anomalies in the inner—core of the vortex. While an analogous
effect also occurs in the unbounded nondivergent analytical model in the form of Rossby
edge waves, this response is limited to just one vorticity anomaly in the radial direction.
The AB model exhibited algebraic growth for some outer-core asymmetries. The
growth cycle starts with radial flow from the initially upright asymmetry inducing PV
anomalies in the inner—core where the basic state PV gradient is large. The invertibil-
ity relationship provides a positive Reynolds stress resulting in upshear tilt and algebraic
growth. The n? dependence in the invertibility relationship greatly limits this sequence of
events at higher wavenumbers. Algebraic growth is also observed with inner—core asym-
metries but the effect is greatly reduced because of the smaller influence scale. This effect

merely serves to hold off the decay of wavenumber two for a short while.




Chapter 4

WAVENUMBER ONE

4.1 Introduction

Observations show that wavenumber one is the dominant asymmetry in mature hur-
ricanes (SM). Although the series solution in the AB formulation for wavenumber one
should converge for hurricane-like vortices, it is of great practical interest to examine
the evolution of wavenumber one in the AB model. As we shall see, this exercise also
elucidates the unique physics of wavenumber one.

Although it has been discussed elsewhere, it is useful to summarize the various envi-
ronmental factors that force wavenumber one asymmetries in a hurricane. From a Taylor
series expansion about the grid center, Willoughby (1992) shows both the environmental
flow at the center and the environmental vorticity gradient across the vortex project onto
wavenumber one. Often the largest contribution from the environmental vorticity gradient
is the planetary vorticity gradient giving rise to the so—called “8 gyres” (Franklin et al.
1993). Frictional stress under a moving storm produces wavenumber one forcing (Shapiro
1983). A tilting of the vortex by vertical shear also results in wavenumber one forcing.
Eyewall convection is often observed to have a wavenumber one component, especially in
the vortex development stage. These are just a few of the various asymmetric forcings that
act on a hurricane during its life cycle. As a first step towards understanding the evolution
of wavenumber one asymmetries that are continuously forced, this work assumes a quies-
cent environment at the boundaries and examines the evolution of asymmetric conditions
from the perspective of an initial value problem.

In the polar representation, using azimuthal Fourier modes, Willoughby(1992) uses a

Taylor series representation to show small differences between the vortex center and the
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grid center project primarily onto wavenumber one. He refers to this contribution as the
“alpha gyre” and developed a procedure called “alpha gyre closure” for selecting a new
grid center that minimizes the energy of wavenumber one. The capability of selecting a
new grid center that minimizes the energy of the asymmetries also exists in the current AB
model but has not been used. This procedure entails decomposing the total field about
the new center and redefining the basic state. Since this could have the undesirable effect
of altering the stability properties engineered into the benchmark vortex, we decided to
keep the physics as simple as possible. Repositioning the grid center and decomposing the
fields azimuthally about that new center can be thought of as a non-linear effect since
each of the old wavenumbers may now project onto different wavenumbers. As long as
the positioning error is small, however, the resulting contribution to wavenumber one will
be small and the linear perturbation assumption will remain valid. For linear dynamics
on an f-plane, the AB model will be shown to accurately evolve wavenumber one in a
stationary grid.

The benchmark vortex of chapter 3 is initialized with the same Gaussian structure of
e used in section 3.2.2 for wavenumber one with 7., = 200 km, 4, = 2 X 10~ 9%sm~2,

and Ttold — 100 km.

4.2 Integrated Energy

The integrated energy plot of figure 4.1, shows a marked difference to the decay
plots of the higher wavenumber asymmetries of chapter 3, see figures 3.8 and (3.10).
Wavenumber one goes through an initial growth cycle as did wavenumber two for the
outer—core asymmetry, but the growth is six times larger than the growth in wavenumber
two. The growth cycle reverses to decay at 10 hrs whereas in the wavenumber two case this
reversal occurred at 3.5 hrs. These differences are easily explained by the n? dependence
in the invertibility relationship. The large influence scale allows greater cross correlation
between the inner and outer asymmetries, discussed in section 4.4. Another contribution
to the differences between the growth and decay cycles of wavenumbers one and two is
the wavenumber dependence of the azimuthal group velocity. Section 3.4.3 gives a more

detailed discussion of how this relates to asymmetric growth.
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Figure 4.1: Normalized energy curve for an initial wavenumber one asymmetry at
r = 200 km. Note how the plot asymptotes to 150%.
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The most significant difference between the integrated energy decay of wavenumber
one and higher wavenumbers is the value to which the asymmetries decay. All high
wavenumber asymmetries decay to zero no matter the initial condition. This is unlike the

behavior of wavenumber one which asymptotes to the non—zero value of 150%.

4.3 Long term solution: the Pseudo mode

The non-divergent model is once again very helpful in understanding features ob-
served in the AB model.

By applying matching conditions across the discontinuity in the basic state vorticity,
GSM derive the following solution for the Fourier amplitude of the streamfunction in the

unbounded Rankine vortex,

. T S ing e C) |
= indt/p — i ) indt/p
P / G(r, p)Cso€ pdp = ¥1— / =T anijp) pdp
0 0
R 2n 7 G(a,p)fso —i(n=1)t/a
+¥,; { o+ .y 0/ (n—1—anv/p) pdp| e o (4.1)

where 7, is the initial amplitude of the Rossby edge wave,

A a a—'nrn, 0 <r S a
b= —— ,
2n -n

ar™", a<r<o
f so Tepresents the smooth part of the disturbance vorticity, and the Green’s function along
with other variables are defined in section 3.3.1.

GSM then make the following interpretation. The first line of (4.1) is identified with
the continuous spectrum solution and is the unbounded analogue of the bounded solution
presented in section 3.3.1. The second line is a conversion term that transfers some of
the energy in the continuous spectrum solution into the discrete mode, which is the third
line of the equation. Interestingly, even with no edge wave component initially (7 = 0),
the continuous spectrum solution always projects onto the edge wave at later times (cf.
Farrell, 1982).

For smooth vorticity initial conditions that are zero within the RM W, the oscillating

intergal of the first two terms of equation (4.1) will vanish as ¢ — co. For n = 1, the last
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term is a function of r and A only. In this case, as t — oo,

3(r) — ¥y [% N zzn/( G(a, p)Gso pdp] , (42)

/ n—1-—and/p)

The radial dependence of \i/(r) for n = 1 is merely proportional to (r). Thus,
the longtime streamfunction for wavenumber one is simply the image of the basic state
vortex, the pseudo mode. The continuous nondivergent model behaves similarly yielding

the pseudo mode at long times,
R 117 92 B
90) = 7 | [#2:0) do| 3(0) (+3)
0

The pseudo mode does not rotate and will be shown to predict the new location of the
vortex. An important conceptual distinction should be made between the alpha gyre and
the pseudo mode. An alpha gyre arises from mispositioning the grid center for whatever
reason, whereas the pseudo mode is an alpha gyre forecasted by wavenumber one in a sta-
tionary grid model. Adding the pseudo-mode geopotential to the basic-state geopotential
predicts a new vortex center 12.5 km to the ESE of the original center. The steady state
nature of the pseudo mode implies the following expression for the wavenumber one wind

components,

/__L?i'_ﬁ_a_(?i'>
YETH o T geoa\or )’ (44)
and

, 104 Q8%

v —EE‘—-E—U_-;a/\2. (4-5)

These expressions were evaluated and plotted at ¢ = 72 hrs in figure 4.2. The maximum
‘ﬁ"i of 4.7ms™! is from the NNE and located at the origin.

Equation (4.3) not only shows the pseudo mode is steady but it also has the same
orientation as the initial asymmetry. For this initial conditi(;n it should then have the
same radial structure but be oriented with the PV maximum directly east. Figure 4.2,
however, shows the pseudo mode is rotated slightly. This effect is believed to be a boundary
influence due to the fact that (4.3) is a solution to (4.1) only as r — oo. For a finite outer

‘boundary it can be shown that the magnitude and radial structure are unchanged but




y (km)

41

u, }' Wavenumber 1

200 [T T T T I T T T T T
: > j J /S /L L LY e :
C A
- LT ]
i AR
100 - ‘/",/"//////—_
i ) St ]
i /;29;7‘/ oo ]
- ////-// < ST
SRR A B :
—-100 - < L/ / j l\&\\ (U T 7]
- Sy A S R S e -
i 2 2 A O R U U
- A
A A A A R A T T T S U U S

200 i L e B e
—-200 —-100 0 100 200

. x (km)

Max/Min [0]= 9.3/ 0.2ms™, Max ¢'=379.4m?™, Interval=80.m*s™

at time 72 hrs 0 minutes

Figure 4.2: Wind field and geopotential for the AB pseudo mode. The maximum Iﬁ" ‘ is

located at the origin. Note the large cross contour flow. Negative contours are dashed.
The new vortex center is located 12.5 km from the original center in the direction of the

low.
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a slowly rotating component exists at all times. The finite boundary therefore causes
the vortex to slowly rotate about the original center. For the AB simulation discussed
here the magnitude and radial structure did indeed remain unchanged and the rotation
rate was found to be very small, 1.3 X 10~%s~1. The positioning error after 72 hrs was
6 km, twice the radial grid spacing of the numerical model. This error minimally affects
vortex motion and only indirectly effects the symmetrizing component through the slowly
rotating influence of the pseudo mode. The fact that the boundaries have a small effect on
the storm motion is understood by considering the entire fluid domain as the vortex. Every
fluid column must move in concert with the vortex center, but the perturbation winds are
effectively forced to vanish at the boundaries in the stationary grid. Action at a distance
then reaches across the domain causing every fluid column to have a small-amplitude,

slowly-rotating component.

4.4 Algebraic Growth: the Transient Response

The first column of figure 4.3 shows the initial wavenumber one fields. The PV distur-
bance induces the geopotential disturbance of the third row. The disturbance geopotential
then has an associated balanced wind but the Reynolds stress shows no net asymmetry
decay or growth. This benign pattern rapidly changes in response to the radial flow
associated with the initial asymmetry.

The second column is representative of the growth phase. As in the the wavenumber
two example of section 3.4.3, radial flow across the basic state PV gradient forces PV
anomalies in the inner—core. For the sake of clarity, the PV plots have been partitioned
between the first and second rows. The partition was chosen in such a way that the fine
scale stfucture of the symmetrizing portion appears in the first row, while the entire pseudo
mode ultimately emerges in the second row. Note the large difference in contour intervals
used in the first and second rows. The invertibility relationship produces a response in the
geopotential which has an upshear tilt and subsequent algebraic growth. The Reynolds -
stress contribution to the energy tendency shows net growth at r = 110 km. Although

the Reynolds stress is large inside the radius 7 = 50 km, the pattern is nearly symmetric

and contributes little to the growth or decay.
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Figure 4.3: Map plots of g, ¢/, and Reynolds stress (uyv) for wavenumber one showing
transient growth and the emerging pseudo mode. For the sake of clarity, the PV plots
have been partitioned between the first and second rows. The partition was chosen in such
a way that the fine scale structure of the symmetrizing portion appears in the first row
and the entire pseudo mode ultimately emerges in the second row. Note the difference

between the contour intervals used in the first and second row.
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Figure 4.4: Positions of the minimum geopotential every 2 hrs in the AB model. This
represents the vortex motion resulting from the advection by the initial wavenumber one
asymmetry. The initial condition has the same Gaussian form as that used throughout
this chapter. The hurricane symbols show storm position every two hours starting with
plot #0 for t = 0 located at (z,y) = (0,0). The 11" plot corresponds to both t = 22 hrs
and t = 24 hrs.

The third column is representative of the decay phase. The figures show how the
pseudo mode has interfered with the algebraic growth, cf. figure 3.12. The initial asym-
metry (row one) has wrapped through 360°. But since the pseudo mode (row two) has
such a large value, its influence scale reaches across the trailing arm and results in only a
small downshear tilt in the geopotential field. This interference effect combined with the
eventually steady-state nature of the pseudo mode greatly prolongs the growth and decay
cycle of the transient response.

When viewed from a stationary grid, the evolution detailed in figure 4.3 can be
interpreted as transient vortex motion in response to an initial “push”. The “push” is
not impulsive nor is it from a constant direction. The initial wavenumber one asymmetry
slowly rotates and symmetrizes producing a weakening advective flow across the vortex.
By tracking the minimum geopotential, figure 4.4 shows the transient vortex motion.
Since the total geopotential field is nearly circular, the minimum geopotential is a good
first guess at the vortex location. The hurricane symbols show the position every two

hours starting with plot #0 for ¢ = 0 located at (x,y) = (0,0). The 11** plot is the plot
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for both ¢ = 22 hrs and ¢ = 24 hrs. This interpretation clarifies the importance of the
pseudo mode. The pseudo mode represents the integrated effect of the initial asymmetry

on storm motion including the transient growth/decay cycle.

4.5 An Exact Solution

For azimuthal wavenumber one, equation (3.6) may be integrated exactly (Smith and

Rosenbluth 1990). The solution is
~ oo S YN — _ ~
Pi(r,t) = —r / dr' =5} [1 +itQ(r) — Q') [ h(+"), (4.6)
r

where

W) = 5 [ do s E00), 47)

and ¢(© denotes the initial radial structure of relative vorticity for wavenumber one. The
derivation of (4.6) exploits the fact that ¥1(r,t) = rQ2(r) (the pseudo-mode) is an exact,
steady solution of (3.6). The resulting second-order radial structure equation in Fourier-
Laplace space can be reduced to a first-order equation and integrated in closed form. For
solutions that are bounded at the origin and which vanish at infinity, the inverse Laplace

transform then furnishes (4.6). Provided
oo -~
/ dp p* {0 (p) < o0, (4.8)
0

the exact solution is valid for arbitrary swirl profiles whose angular velocity is finite at the
origin and whose large r behavior is no worse than a constant. This covers a wide variety
of basic state velocity profiles of geophysical interest.

Smith and Rosenbluth developed this solution within a plasma physics context. The
solution technique has been rediscovered by Reznik and Dewar (1994) in an analytical
study of vortex motion on a beta plane. In both investigations, however, emphasis was
directed at understanding its long time behavior and a detailed analysis of its transient
dynamics was not considered. In the next section, the transient dynamics of the exact

solution will be compared against the AB model.
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Figure 4.5: The non-dimensional basic state vortex used in the exact solution:
Q=2/1+7?%), 7 =rQ, i = Q+ dv/dr. The model domain is of length 40, but only the
inner 10 units are shown. Although this swirl profile falls off significantly faster than the
benchmark vortex of the AB model, it is nevertheless stable to exponential disturbances.

4.6 Exact Solution Results: A Side-by—Side Comparison

From the form of the exact solution it is difficult to identify the nature of the transient
solution. It may nevertheless be revealed by considering the evolution of wavenumber one

asymmetries on the nondimensional basic-state swirl profile

2r
v = . 4.9
o) = oy (49)
The corresponding nondimensional angular velocity profile is
a 2
(r) = m, (410)

and characteristic length and velocity scales correspond to the radius of maximum winds,

10

and the maximum tangential velocity, respectively, see figure 4.5. The model domain is of '

length 40 which corresponds to the domain of the AB benchmark vortex but only the inner
10 units are shown. Since the mean vorticity is a monotonic function of radius, the vortex
satisfies Rayleigh’s sufficient condition for exponential stability. Despite the fact that this
vortex has an infinite integrated kinetic energy and angular momentum, the results shown
below are not sensitively dependent on these properties and have been verified for other
swirl profiles with finite energy and angular momentum.

Shown in figure 4.6 is the evolution of an initial wavenumber one disturbance ({0 =
exp[—(r — 3)?]). This initial condition corresponds to the initial condition used in the

AB model. The left column displays the Fourier vorticity—amplitude as a function of 7,
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Figure 4.6: Time series showing the radial plots of ] (left panels) and horizontal plots of ¢’
(right panels) for the Smith and Rosenbluth (1990) exact solution. The initial asymmetry
is positioned at 7 = 3. For the sake of clarity values of |[¢’| > 3.8 have not been contoured.
Times correspond to 0.0, 3.2, 6.4, and 9.6 circulation times and the horizontal distance
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49

while the right column displays map plots of the asymmetric vorticity field. Negative
values are enclosed in dashed lines. Contour values below and above (—3.8/3.8) have
been omitted for the sake of clarity. Shown in figure 4.7 is the evolution of an initial
wavenumber one disturbance in the AB model. The left column displays the Fourier PV-
amplitude as a function of 7, while the right column displays map plots of the asymmetric
PV field. Negative values are enclosed in dashed lines. Contour values below and above
(—=1.05x 1078/1.05 x 10~8)sm~2 have been omitted for the sake of clarity. In both figures
the times correspond to 0.0, 3.2, 6.4, and 9.6 circulation times and the horizontal distance
shown is five RMW units. Both solutions display expected features consistent with theory
and also show good qualitative agreement in the fine structure.

At a radius of r = 0.4 in the nondivergent model and 7 = 40 km in the AB model, we
see the first of the expected features: the rapid emergence of the pseudo-mode. Taking the
Laplacian of (4.3) reveals the vorticity field associated with the pseudo mode is maximum
where dl/dr is maximum, r = 0.43 . The analogue of vorticity in the shallow water
model, §¢, is maximum where dg/dr is maximum, r = 40 km. The pseudo mode is
not the only interesting feature, however, found in the inner core. Superimposed on the
pseudo mode is a transient algebraic growth and decay cycle. Acknowledging that the
initial asymmetries in the two models are similar but not exact could account for the
larger algebraic growth observed in the nondivergent model. But another factor is the
differing influence scales between the divergent and nondivergent models. This induces
stronger cross-vortex flow and larger algebraic growth in the nondivergent model. The
trailing arms of the nondivergent model lag behind those of the AB model because the
swirl profile used in the nondivergent model falls off faster than that used in the AB model.

The exact solution at £ = 60 shows the pseudo mode oriented due east. This compares
to an orientation slightly south of east in the AB model at the corresponding time of
t = 34 hrs 12 min. At much longer times, the pseudo mode in the exact solution slowly
rotates at a dimensional angular velocity of 9 x 10~7s71, as compared to —1.3 x 1076571

in the AB model. This is the boundary influence discussed in section 4.3. The rotation

rate in the nondivergent model is proportional to b~2 where b is the position of the outer
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boundary. Since the domains of the two models scale identically, the weak rotation of
the pseudo mode in the shallow water model may also be dependent on the variable
deformation radius.

Upon close investigation, one also observes outward propagating waves between the
inner-core and outer-core asymmetries. These waves are observed for 1.25 < r < 2.5 in the
exact solution and 120 km < r < 230 km in the AB model. The wave crests emerge at the
edge of the pseudo-mode and travel outwards to a radius where their outward propagation
ceases. The radial plots are especially useful for seeing this effect. The physics of these
waves are elucidated in chapter 5. For now they will be used as another measure of model
agreement. To further examine the outward wave propagation, radius-time plots were
made of both models that track the radial location of wave crests in the Fourier vorticity
and PV amplitude. Wave crests are identified by zeros in d®|{|/dr® or d®|g¢|/dr®. This
analysis method purposely filters out individual phase features. The filter method may be
illustrated by considering a Hankel function representation of an outgoing cylindrical wave
of some field, g(r), with given phase speed. The absolute value of the Hankel-function
wave is time invariant and has no zeros in d3|g(r)|/dr®. This method is therefore naturally
suited for determining radial group velocity.

Upon comparing the exact solution (figure 4.8 bottom panel) with that of the AB
model for wavenumber one (figure 4.8 top panel), we see the detailed structure of the
outward propagating waves is extraordinarily similar. The similarity persists despite the
fundamental differences between the divergent and nondivergent models.!

Even fine details such as the “cusp” shape at t = 9 in the exact solution appear at
t = 5 hrs in the AB simulation (1.4 circulation times in both models). In the exact solution
the dimensional group velocity calculation for the first wavecrest at (r,t) = (1.33, 15) is
1.3 ms~!. A similar calculation for the first wavecrest at (r,t) = (84 km, 6 hrs) in the AB

simulation also yields 1.3 ms™!. As another check of model consistency we note that the

1The wavecrest algorithm was unable to continuously track the leading asymmetry for the AB model.
Detailed analysis of the radial plots, however, confirm that the leading asymmetry moved smoothly out-
wards on a radial trajectory suggested by the broken plot.
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Figure 4.8: Radius-time plots showing migrating wavenumber one wavecrests in the AB
model (top panel) and the Smith and Rosenbluth (1990) exact solution (bottom panel).
The maximum time on each plot represents approximately 9 circulation times. The hori-
zontal domain is five RMW units for the AB model which compares to four RMW units
in the exact solution.




exact solution exhibits dispersion at (r,t) = (2.5,38), while the AB simulation exhibits
dispersion at (r,t) = (180 km,21 hrs). Non-dimensionally, the latter corresponds to

(r,t) = (2.4,37). The stationary feature is the pseudo mode in both models.
4.7 Summary

In this chapter the AB shallow water model has been further validated through a
detailed analysis of wavenumber one evolution. Among the physical processes better
understood is the manner by which wavenumber one moves the vortex. The analytical
solution to the nondivergent model of GSM revealed that wavenumber one asymmetries
project onto the pseudo mode through an interaction term. Reynolds stress plots of the
AB model then give a physical interpretation to the interaction term. The steady pseudo
mode emerges at long times and identifies the final position of the vortex.

Detailed comparison of the AB model with an exact solution of the linearized non-
divergent model demonstrated remarkable agreement. Items of agreement included the
emergence of the pseudo mode and radially propagating vorticity waves. Even specific
measurements such as wave speed and location agreed within a few percent.

Understanding the transient dynamics and the pseudo mode reveals that it may be
possible to diagnose storm motion in the linear model from the current geopotential field.
The method may entail extracting that portion of the geopotential tendency which has
the same radial structure as #(r). Extracting this portion of the signal may prove straight- .
foreward because of the dominance of the contribution involving storm motion. Knowing
the contribution of the tendency of wavenumber one which projects onto storm motion
and the structure of ®(r) allows the new center to be determined. The vortex motion
can then be incorporated into a moving grid which will remain at the center of the vortex

every forecast step.




Chapter 5

VORTEX ROSSBY WAVES

5.1 Introduction

Chapter 3 showed that fine-scale PV waves are natural byproducts of the symmetriza-
tion process in regions possessing a nonzero basic state PV gradient. High temporal reso-
lution reveals that such fine structures are radially propagating waves accompanying the
algebraic decay cycle described in section 3.4. Their robustness was further demonstrated
by an exact solution of the nondivergent model for wavenumber one. Finally and most
importantly, the symmetrization process produced structures which exhibited qualitative
similarities to hurricane spiral bands.

Two main theories have been proposed to explain the physics of outwardly propagat-
ing hurricane bands. The first theory describes these features as outwardly propagating
gravity-inertia waves (Abdullah 1966; Kurihara 1976), while the second describes them as
sheared PV disturbances (GS). Given the fine-scale structure and outward propagation of
the inner bands, one might naturally suspect them to be gravity-inertia waves. However,
since both inner and outer bands are often observed to propagate slower than the local
mean flow (Senn and Hiser 1959; Powell 1990; May 1995), their basic dynamics may in-
stead lie rooted in the “slow-manifold” associated with the advective component of the
flow. Spiral bands were qualitatively described as vortex Rossby waves by MacDonald
(1968). Unlike planetary Rossby waves, which owe their existence to the meridional gradi-
ent of planetary PV, vortex Rossby waves were postulated to exist on the radial gradient of
storm PV. Following this theme, GS presented perhaps the most penetrating investigation
of hurricane spiral bands to date. In the context of PV dynamics, GS demonstrated that a

shallow water primitive equation model evolves banded features with minimal projection
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on the gravitational linear-wave manifold. For the elliptical vortex case of GS, the banded
features studied probably correspond to the leading wave packet observed in the radius-
time plots of this chapter and chapter 4. However, the link between the symmetrization
process, algebraic growth, and fine-scale outwardly propagating PV waves was not the
subject of their study.

In this chapter we focus on the problem of outwardly propagating bands in vortex
flows. There structure will be examined within the context of PV dynamics. The bands are
described as outwardly propagating vortex Rossby waves on an f-plane that are ultimately

sheared by the differential rotation of the vortex.

5.2 Wavenumber One

As demonstrated in section 4.6, the exact nondivergent and AB models behave re-
markably alike for stable vortices. Further examination reveals three other noteworthy
characteristics in figure 4.8. The first is the tendency of individual wave crests to slow as
they move outwards. Secondly, the radial wavenumber increases and the corresponding ra-
dial group velocity decreases at long times. Thirdly, we observe dispersion in two instances
where wave crests emerge at (r,t) = (2.16,49) and (r,t) = (2.68,43) which correspond
to dimensional units of (160 km,28 hrs) and (200 km,24 hrs) respectively. The results
suggest an important wave dynamic operating in vortex flows whereby disturbances may
extract energy from the vortex at one radial band and deposit it at another radial band.
Whether or not such processes are operative for higher wavenumbers is the subject of the

next section.

5.3 Higher Wavenumbers

Higher wavenumbers exhibit symmetrization and radial wave propagation without the
complication of the pseudo-mode. As representative of higher wavenumbers, wavenumbers
two and three are examined in detail below.

As an illustration, consider idealized asymmetries forced by convection in the eyewall
of a hurricane:

r—"75 km))2}.

g =2x10"%sm™exp [—(( = o (5.1)
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The evolution summarized in figure 5.1 shows perhaps the simplest case of outwardly
propagating shear waves.

Initially, the leading wavenumber two wave packet moves from r = 75 km tor =
120 km where outward propagation ceases (figure 5.1 top panel). Almost immediately the
initial disturbance has induced an inner-core asymmetry near the maximum of the basic
state PV gradient. This asymmetry then emits wave packets which propagate outward to
75 km where again outward propagation ceases. The radius at which outward propagation
ceases will henceforth be referred to as the stagnation radius, cf. Tung (1983). As will
be shown, the stagnation radius is not unique and depends on the initial wave location
and radial structure. The fact that the inner wave crests find their stagnation radius at
75 km is merely coincidental and has nothing to do with the RMW nor the location of
the initial asymmetry. An additional feature to note is the stationary wave crest at 25 km
ends when the wave activity at other radial locations end. This marks the completion of
symmetrization when the asymmetry can no longer force an inner—core response.

The bottom panel of figure 5.1 shows that the symmetrization of wavenumber three is
accompanied by much less radial wave activity. Similarly to wavenumber two, the initial
wave crest reaches its stagnation radius at 110 km. Also, the forced inner—core response
ends approximately when the wave activity ends elsewhere.

Figure 5.2 shows radius time plots of wavenumbers two and three initially at r =
200 km. For wavenumber two, the stagnation radius of the initial disturbance at first
appears as though it would be 240 km. But the wave crest nearing 200 km at ¢t =15 hrs
interferes with the initial packet and moves thé stagnation radius out to 260 km. Although
a similar interference effect may have occurred for wavenumber three at ¢ = 13 hrs it
evidently didn’t change the stagnation radius of 230 km. Radial plots (not shown) indicate
the stagnation radius of the inner wavenumber two asymmetr& is 200 km and that of the
wavenumber three case is 150 km. Generally, as the center of the initial condition is placed
at greater radii, two qualitative differences are noted. First, the inner-core asymmetries
are observed to propagate beyond the radius of maximum wind; and secondly, many

more wave crests are observed. Since distant asymmetries symmetrize more slowly, they
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Figure 5.1: Radius-time plots showing migrating wave crests in the AB model for
wavenumbers two (top panel) and three (bottom panel). The maximum time represents
approximately 9 circulation times. The initial asymmetry was located at 75 km and had
an e—folding distance of 50 km for both wavenumbers. For wavenumber two the stagna-
tion radius of the outer asymmetry is approximately 120 km and that of the forced inner
response is coincidentally 75 km. For wavenumber three the stagnation radius of the outer
asymmetry is 110 km. In both cases, the stationary response in the inner-core ends when
the outer wave crest reaches its stagnation radius.
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Figure 5.2: Radius-time plots showing migrating wave crests in the AB model for
wavenumbers two (top panel) and three (bottom panel). The maximum time represents
approximately 9 circulation times. The initial asymmetry was located at 200 km and
had an e-folding distance of 100 km for both wavenumbers. For wavenumber two the
stagnation radius of the outer asymmetry is 260 km and that of the forced inner response
is 200 km. For wavenumber three the stagnation radius of the outer asymmetry is 230 km
and that of the forced inner response is 150 km. In both cases, the stationary response in
the inner—core ends when the outer wave crest reaches its stagnation radius.
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appear as quasi-steady forcing to the inner core. The result is a series of wave-shedding
events terminating when the outer disturbance has decayed sufficiently to force a negligible
inner-core response. This example may have important meteorological applications since
it raises the possibility that stationary environmental forcings may continuously excite
radially propagating shear waves in the near-core region of a hurricane vortex.
Comparing the results for wavenumbers two and three shows radial wave-propagation
effects diminish with increasing azimuthal wavenumber. At very high wavenumbers
(n >> 2) radial propagation is virtually non-existent and outer-core asymmetries induce
almost no inner-core response. The latter property is easily traced to the wavenumber-
dependent influence scale that relates PV to geopotential. The former property will be
explained in section 5.4. Taken together, these experiments indicate that for a stable vor-
tex, asymmetric dynamics for high wavenumbers is qualitatively similar to the bounded

Rankine vortex (SM).

5.4 WKB Analysis

The behavior of the exact solution and the AB results show outwardly propagating PV
waves often possess radial length scales (I) that are small compared to the characteristic
radial scale (L) of the vortex. Under such conditions it is justifiable to seek approximate

solutions near r = R in the form
#(r, M) ~ A(t) exp [z <n)\ +k(t)(r - R) — A(t))], (5.2)

where A(t) is a time-dependent amplitude, k(t) a time-dependent radial wavenumber, and
A(t) a time-dependent phase. Since (5.2) is expected to describe sheared disturbances we
may without loss of generality assume that A is real-valued. Provided ! << L, basic-state

variables can be assumed slowly varying and may be expanded in series:

gr) = go + 7, 67 + ...
Er)y =&+ & br+ ..
P(r) =72+ 732 br + ...

Q(r) = Qo + QL r + ...
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Figure 5.3: Schematic of a local plane-wave approximation to a trailing spiral in the
WKB formulation. The solid line represents the wave crest and the dashed lines represent
neighboring wave troughs. The z and y scales are in terms of RMW units.
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g, o |
dr(?‘) =q,+q, or +
1 1 or

where 6r = 7 — R, prime denotes differentiation with respect to radius, and the zero
subscript denotes evaluation at r = R. On substituting (5.2) and (5.3) into the fore-
cast equation (2.30), neglecting terms of O((kR)™!, ér/R), assuming 5%%7; is O(1), and
equating real and imaginary parts to zero gives, respectively

n?
R2

2 2
<k2 + ’Yo R2> (A nQ ) ;io <k2 + ’yo R2> (k + nﬂ')ér =0, (5.5)

where dot denotes differentiation with respect to time. In the derivation of (5.5) the

A(k2 + 52+ ) +2kkA =0, (5.4)

term ng'& 6r/(d.R) has been neglected. When this term is compared with (k? + 7

n?/R%) nQ., ér, it is found to scale as O{(kR)™! x (kL)~'}. Thus provided kL is not

small, the term in question is of the same order as terms already neglected. _
Equations (5.4) and (5.5) are integrated as follows. Since (5.5) is valid for small, but

otherwise arbitrary ér, setting 6r = 0 furnishes the instantaneous wave frequency

i néo A
A(t) = nfdo .
B=net gy (k2 +72 + ) o0

Because k2 + 72 + n?/R? is never zero this in turn implies
k= —nf,
whose integration yields
k(t) = ko — nt QL (5.7)
where ko is an initial radial wavenumber. Equations (5.4) and (5.5) then furnish

<k§ + 52 + ﬂi)Ao

At = — b
® (ko — ntQL)2 +72 + 27

(5.8)

where A, is the initial wave-amplitude. Expressions (5.7) and (5.8) represent the cylin-

drical analogue of sheared disturbances in rectilinear simple-shear flow and the solutions
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are well known. The derivation of (5.6) in the context of axisymmetrizing disturbances is
believed new, however, and a physical interpretation is desired.

Equation (5.6) can be shown to represent the local dispersion relation

no %
w=nf + Rio (172 4 %;) (5.9)
for a spectrally localized wave packet whose initial central wavenumbers are k, and n,
respectively (cf. Tung 1983; Yamagata 1976). This dispersion relation is analogous to
the dispersion relation for nondivergent Rossby waves on a beta-plane in a uniform zonal
wind. The meridional derivative of planetary PV is replaced by the radial derivative of
basic-state storm PV, while the Doppler-shifted frequency is replaced by the azimuthal
wavenumber times the basic-state angular velocity. For a cyclonic monopole whose basic
state possesses an everywhere negative radial PV gradient, the dispersion relation predicts
that individual waves retrogress relative to the local angular velocity. Unlike Rossby waves
on a beta plane, however, the radial wavenumber is ever-changing due to the symmetrizing
effect of the vortex. As we will see this has fundamental consequences on the kinematics

and dynamics of vortex wave-packets.

Radial and azimuthal phase velocities, defined by Cpr = w/k and Cpx = wR/n are

given by:
U¥e ngo A
Cpr = =2 + —= , 5.10
=t Rk, (1 42 + ) (510
g ~
Cpr = RQ. + -533——‘1——— (5.11)

B (k2 +92 + 32)
The speed and direction of energy propagation, however, is controlled by the group velocity

whose radial and azimutha} components, defined by C,. = 8w/dk and Cgy = 6w/d(n/R)

are given by: .
—2kné,q,

= ’ 5.12

" RG (K2 + 32 + )? (512

Cyr = RQo + ‘i—— . — k2 + 72 - —T%(l +2R202)|. (5.13)
%o (k* + 72 + %2)? R

In (5.9 ~ 5.13), k is given by (5.7).
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Now to fix ideas consider the simple case of a cyclonic monopole with a non-positive 7.
A hypothetical spiral that spirals cyclonically inwards is sketched in figure 5.3. Portions

of this spiral can be described by
kr + n) = constant,

and n may be assumed positive without loss of generality. Since a trailing spiral is associ-
ated with positive k, its corresponding radial group velocity is positive. Hence, symmetriz-
ing disturbances on vortez monopoles always have an outward directed group velocity. This
is quite unlike the behavior of sheared disturbances in a uniform PV environment that
have zero group velocity in the cross-shear direction. As the packet propagates outward it
is continually slowed by the shearing effect that increases its radial wavenumber. Since for
large k the radial group velocity goes as O(k~3) the shearing effect eventually dominates
and radial propagation ceases. This describes the stagnation radii of section 5.3. The
radial trajectory of an isolated wave packet may be obtained from a time integral of the

radial group velocity (cf. Tung 1983):

A { 1 1 }
r(t) =R+ ——== - — , 5.14
() Go RO\ (R2+72+55) (ko —nt)2 +72+ % (5.14)

where r(t) denotes the instantaneous radial position of the wave packet. The stagnation
radius, 7, results by letting ¢ — oo:

& @ 1
re =R+ =2 . 5.15
’ g RO (k2 +72 + %) (519)

Similar reasoning suggests that leading spirals (i.e. disturbances possessing an up-
shear tilt; k, < 0) have an inward directed group velocity. In this case environmental
asymmetries can excite inwardly propagating waves until their radial wavenumber changes
sign, after which they would begin their outward propagation. Though one might naively
suspect that highly tilted upshear and downshear initial conditions are equally likely, phys-
ical consideration of hurricane vortices strongly favors trailing spirals. Further discussion
of this point is reserved for section 5.5.1.

Inferences about azimuthal kinematics can also be deduced. For koR >> 1, (5.13)

shows that Cgy — RS, is initially negative. As the packet propagates outward, however,
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Cor— R, quickly becomes positive and ultimately asymptotes to zero at long times. The
latter effect resembles the behavior of the zonal group velocity for simple Rossby waves on
a beta-plane. As the shearing effect predominates, the total wavenumber becomes large.
Instead of the packet always retrogressing, it temporally moves faster than the mean wind
until it is sheared by the differential rotation of the vortex.

Although inferences drawn above may be of a general nature, the case of an unstable
vortex requires understanding how instability growth and saturation interact with the

wave processes examined here. This interesting topic remains for future work.
5.4.1 WKB Validation

To test the usefulness of the WKB approximation developed above, time integrations
of WKB group velocity and AB radius-time plots are now compared. Since the radial
length-scale of the outer initial condition used in the AB integration has roughly the scale
of the radius of maximum wind, k, = 1/RMW seems an appropriate choice. The inner
asymmetry was narrower making k, = 1.5/RMW more appropriate. Because the WKB
approximation assumes kR >> 1, R = RMW is the inner most radius for which we might
hope the approximation to be valid.

The WKB method is a local approximation that ignores distant influences. From fig-
ure 4.6 and the discussion of section 4.4 we observe that the pseudo mode is a quasi-steady
phenomenon that influences the shape and evolution of radially propagating waves in the
near-core region. Because of this limitation, we should only expect qualitative similar-
ity between the WKB approximation and the observed radial propagation for wavenum-
ber one. WKB results for wavenumber one (not shown) show a larger discrepancy with
the AB and exact solution calculation than that noted below for higher wavenumbers.
The foregoing limitations may be manifesting themselves in the representation for k(t)
since the observed group velocities lie between group velocities calculated for k = ko and
k=ko — ntQQ. In addition, the results also show that wavenumber-one features travel a
significant radial distance violating the local assumptions used to derive k().

Figure 5.4 shows WKB radial group trajectories for wavenumbers two and three

calculated by integrating the expression for Cg (5.12) using the benchmark vortex basic
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Figure 5.4: WKB radial wave—packet trajectories for wavenumbers two and three calcu-
lated by integrating the expression for Cy, using the AB benchmark vortex. The top panel
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state quantities. The top panel shows results using ro = 200 km and k., = 1/RMW
and the bottom using 7o = 75 km and k, = 1.5/RMW. The top panel of figure 5.4
predicts the stagnation radii observed in figure 5.2 and the bottom predicts for figure
5.1. The WKB approximation duplicates the character of radial propagation observed
in the AB model quite well. Especially noteworthy is the replication of the asymptotic
(t — oo) behavior of radially propagating wave packets. For the initial condition at
= 200 km, the AB model shows that wavenumbers two and three asymptote to r =
260 km and r = 230 km, respectively while WKB theory asymptotes to 7 = 240 km
and r = 230 km respectively. As was noted in section 5.3, the final stagnation radius of
the leading wave packet was influenced by another wave packet thus violating the locality
assumption. The first stagnation radius was 240 km which is the location prediction by
the WKB radial group velocity. For the initial condition at r = 75 km, the AB model
shows that wavenumbers two and three asymptote to r = 120 km and r = 110 km
respectively, while WKB theory asymptotes to r = 130 km and r = 110 km respectively.
The WKB plots show faster movement from the initial R to the asymptotic r value. This
discrepancy may be attributed to the tightly wound assumption of the WKB theory. This
condition is not met for the initial disturbance which must evolve for some time before
becoming tightly wrapped. Another factor that may contribute to the discrepancy is
that the radial displacement is O(1), pushing the local assumptions used to derive k(t).
For higher wavenumbers (not shown) radial wave propagation diminishes. The WKB
predictions are consistent with this behavior by virtue of the n~3 dependence of Cy;.
The ability of the WKB method to forecast basic observed features of radial wave
propagation gives us confidence in the asymptotic formulation. The functional depen-
dence of both phase and group velocities on the basic-state PV gradient clearly indicates
that such wave features are indeed vortex Rossby waves, conﬁxjming early speculations of

MacDonald (1968).
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5.5 Application to Hurricanes

5.5.1 Limitation of upshear tilt and algebraic growth

Initially, a migratory trough may be tilted upshear as it approaches the vortex. As
with any synoptic scale pattern, however, the approaching trough is typically larger than
the vortex. This implies that large upshear-tilt geometry will exist only locally, with
the rest of the trough being nearly upright. In the analogous plane-wave model on the
other hand, perturbations are easily configured to have large upshear tilt throughout the
domain. This gives the plane-wave model the potential for much greater growth. To
produce large algebraic growth (e.g., Farrell 1987), vortex perturbations must be tightly
wound, anticyclonic spirals. This is unlikely in the face of cyclonically spiraling inflow and
a large anticyclonic shear that tends to force cyclonic spirals.

The scale difference is one reason downshear tilt is forced, but another is the radially
varying basic-state shear. A small portion of the trough imagined above will have a
significant inward group velocity. The inward directed wave will then encounter ever-
increasing shear, quickly changing the upshear configuration to downshear (cf. section
5.4). This results in a fast reversal to outward motion. The conclusion is similar to that of
Tung (1983) who considered the dynamics of planetary Rossby wave packets in rectilinear
simple-shear flow. Tung’s formulation, however, did not consider latitudinal variation of
the basic state shear. Consequently in the vortex case we expect much less inward motion.

Eyewall convection, on the other hand, may produce asymmetries with any orientation
relative to the horizontal shear. But there is no reason to suspect that upshear tilt is
preferred. In fact, recent radar analyses by Tuttle and Gall (1995) show the opposite
to be true, with trailing spirals predominating in the near-core region. The foregoing
discussion does not rule out transient algebraic growth nor minimize its importance. We
merely point out a realistic limitation of algebraic growth and inward propagation within

hurricane-scale vortices.
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5.5.2 Radar Observations

Using a wavelet analysis technique on radar reflectivity fields, Tuttle and Gall (1995)
studied the nature of small-scale spiral bands observed in two hurricanes. Several hours of
continuous radar coverage for hurricanes Andrew (1992) and Hugo (1989) were provided
them by the Hurricane Research Division of NOAA (figure 5.5). Their analysis revealed re-
markably detailed near-core structures with curious characteristics. These characteristics
and their potential relationship to the current work are noted below.

Outward propagation:

A general outward propagation was observed for enhanced radar reflectivity values
in the near-core. The radius-time plot (figure 5.6) shows an outward velocity for these
features of approximately 4ms~!. This is in good agreement with velocity estimates cal-
culated from figure 5.2 for wavenumber two. For the first several wave packets emanating
from the inner-core, the velocity is between 2.5 and 3.5ms™!. Also noted in figure 5.6 is
a stationary wave feature at 95 km, about 3 times the radius of maximum winds. For
the inner-core wavenumber two asymmetries of figure 5.2, the stagnation radius is also
approximately 3 times the radius of maximum winds.

Wave length:

The wavelet-analysis wavelength used was 10 km, corresponding to the approximate
scale of the reflectivity bands. This analysis tends to suppress scales smaller and larger
than 10 km. Close examination of figures 5.6 and 5.7, show there are several regions of
the storm where the radial wavelength of the inner bands may be on the order of 20 km,
or at least different than 10 km. Figures 5.2 and 5.1 show that much of the near-core
wave activity in the AB model exhibits a radial wavelength between 10 and 25 km.

Possible cause:

Tuttle and Gall (1995) speculate that the fine structure of the near-core region is
consistent with boundary-layer roll theory (Fung 1978), but also admit further detailed
kinematic information is needed for a complete confirmation. Perhaps a more plausible
explanation is radially propagating vortex Rossby waves. The associated vertical velocity

couplet propagating with the PV wave will alternately enhance and suppress convection in
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Figure 5.5: Tuttle and Gall’s (1995, figure 1). WSR~57 radar reflectivity of Hurricane
Hugo. Storm relative P3 track and geography are superposed. Arrows denote reflectivity
bands. Reflectivity values start at 5 dBZ and increment by 5 dB.
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Figure 5.6: Tuttle and Gall’s (1995, figure 6). Range-time correlation plot along segment
shown in time sequence plots. Time is indicated along the vertical axis and is in minutes
from 3:15Z. An outward propagation reference line of 4 ms~! is shown.
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Figure 5.7: Tuttle and Gall’s (1995, figure 5). Time sequence correlation values after
applying wavelet analysis to Hugo reflectivity data. A spatial filter of 10 km was employed.
Times are about 10 min apart. Contours start at 0.3 correlation coeflicient and increment
by 0.1. Line segment at 3:20Z shows location for the range-time correlation plot.
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the moist environment of the near-core region. Map plots of symmetrization in chapters
3 and 4 show the long trailing spiral structure of the outwardly propagating waves is
qualitatively similar to the map plots of figure 5.7. One can imagine in the case of spectrally
broad continuous forcing, the clean results exhibited in the symmetrization map plots of

chapters 3 and 4 will become noisy, more like that shown in figure 5.7 .
5.6 Summary

To better understand the potential importance of vortex Rossby waves in vortex
evolution and structure changes, an inviscid wave mechanics was developed. Expressions
for the group velocity were derived using WKB theory. Radial wave-packet trajectories
were consistent with AB simulations in regions of the vortex where the WKB assumptions
were valid. Their dispersive nature and their dependence on the vortex PV gradient
justifies their designation as vortex Rossby waves.

The kinematics of individual wave packets show the existence of a stagnation radius
which provides a site for wave mean-flow interaction. In the presence of convective forcing
this process represents an asymmetric spin-up mechanism that could be operative in the
formative stages of tropical cyclones. At later stages in the hurricane life cycle this process
is consistent with the formation of secondary wind maxima.

In summary the wave mechanics developed here describes spiral bands as vortex
Rossby waves. Within the vortex region, the theory is naturally suited for describing
both inner and outer bands. Although gravity-inertia waves certainly account for some
of the wave structures in a hurricane vortex, their dynamical significance is diminished in
the absence of strong damping or critical levels. For non-stationary gravity-inertia waves
with low vertical-mode number and horizontal wavelengths comparable to the radius of
maximum winds, critical levels are unlikely when considering realistic hurricane vortices.
In contrast, vortex Rossby waves are tied to the vortex and must eventually interact with

it. This suggests an intimate link between spiral bands and hurricane evolution.




Chapter 6

CONCLUSION

The AB shallow water formulation presented here parallels the continuously strati-
fied, baroclinic formulation of SM. The AB model has the potential of solving the scale
problems associated with hurricane dynamics yet is simple enough to effectively illustrate
fundamental processes. The internal consistency of the AB formulation was demonstrated
by formulating conservation laws and diagnostic equations analogous to those of the lin-
earized PE. Despite the formal divergence of the asymptotic series for n > 2 asymmetries
in the near—core region, the zeroth order truncation was found to accurately evolve these
wavenumbers on a stable, hurricane-like vortex. For these wavenumbers, the AB model
was validated using a side-by-side comparison with analytical solutions for nondivergent
vorticity dynamics.

The AB shallow water model has been further validated through a detailed analysis of
wavenumber one evolution. Among the physical processes better understood is the manner
by which wavenumber one moves the vortex. The analytical solution to the nondivergent
model of GSM revealed that wavenumber one asymmetries project onto the pseudo mode
through an interaction term. Reynolds stress plots of the AB model then give a physical
interpretation to the interaction term. The steady pseudo mode emerges at long times
and identifies the final position of the vortex. Understanding the transient dynamics and
the pseudo mode suggests that it may be possible to easily diagnose storm motion in the
linear model from the current geopotential field.

Detailed comparison of the AB model with an exact solution of the linearized nondi- '
vergent model demonstrated remarkable agreement. Agreement included radially propa-
gating vorticity waves. Even specific measurements such as wave speed and location agree

within a few percent.
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To better understand the potential importance of vortex Rossby waves in vortex
evolution and structure changes, an inviscid wave mechanics was developed. Expressions
for the group velocity were derived using WKB theory. Radial wave-packet trajectories
were consistent with AB simulations in regions of the vortex where the WKB assumptions
were valid. Their dispersive nature and dependence on the vortex PV gradient justifies
their designation as vortex Rossby waves.

The kinematics of individual wave packets show the existence of a stagnation radius
which provides a site for wave mean-flow interaction. In the presence of convective forcing
this process represents an asymmetric spin-up mechanism that could be operative in the
formative stages of tropical cyclones. At later stages in the hurricane life cycle this process
is consistent with the formation of secondary wind maxima.

In summary the wave mechanics developed here describes spiral bands as vortex
Rossby waves. Within the vortex region, the theory is naturally suited for describing
both inner and outer bands. Although gravity-inertia waves certainly account for some
of the wave structures in a hurricane vortex, their dynamical significance is diminished in
the absence of strong damping or critical levels. For non-stationary gravity-inertia waves
with low vertical-mode number and horizontal wavelengths comparable to the radius of
maximum winds, critical levels are unlikely when considering realistic hurricane vortices.
In contrast, vortex Rossby waves are tied to the vortex and must eventually interact with

it. This suggests an intimate link between spiral bands and hurricane evolution.

6.1 Suggested Future Work

In its current configuration, the AB model can move the grid in cases where the
vortex motion is of interest. The insight gained in chapter 4 may simplify the grid moving
algorithm or even make possible a “perfect” vortex—following algorithm for the linear
model. Motion experiments in a variety of environmental flows could be carried out using
the streamlined grid moving algorithm. The environmental flow coﬁld be complex and
include synoptic features such as shortwaves. Being a balance formulation, the model
numerics shouldn’t be overly sensitive to the initial asymmetries or boundary conditions

forced by the environment.
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Weakly non-linear terms may be added as a future enhancement. The model al-
gorithm was developed with the capability to iterate on the geopotential tendency in
anticipation of the non-linear formulation. Scaling arguments show the non-linear terms
to indeed be small (SM) and the model should rapidly converge.

With the zeroth order AB formulation validated, the model could be extended to a
two layer formulation. This would allow among other things, investigation of outflow layer

dynamics.
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